Bothin Marsh, in Marin County
Nearly all continents and countries on Earth share one constant: the concrete, plastic, steel and asphalt of any cities’ infrastructure. The sidewalks, highways, subway systems and airports that have become so necessary in life are slowly expanding outwards. Urbanization spreads, developing countries develop, and people worldwide work towards more efficient and convenient lives. Since the Industrial Age, humankind has been working towards this goal.
Yet, today, we exist in another movement, another age: the Environmental Age. Rachel Carson’s Silent Spring sparked a movement to protect, conserve, document, and heal the environment—a movement that’s still going strong. National parks have appeared all over the world, and conservation has risen to political importance. Nowadays—especially in Marin—people are constantly reminded to ‘Go Green,’ and from personal shopping bags to newly electronic buses, efforts to cut down waste have become mainstream.
Outside of environmentalists, several different branches of science have come together to protect the Earth’s ecosystems, as well. Habitat restoration employs the expertise of biologists, botanists, ecologists, and engineers to analyze how to best protect valuable ecosystems in urban landscapes and sprawling parks.
Several projects focus on previously destroyed or damaged ecological systems that need to be patched up. On this front, biologists and botanists provide valuable information about what types of plants need to be replanted, and what kinds of native species need to be re-introduced. Engineers might want to examine how to prevent excessive soil erosion, flooding of the area (especially concerning wetland restoration), and consider whether or not groundwater is available for harnessing.
Freshly planted vegetation in a site for ecological restoration.
Ecosystems are complex. There are nutrients in the soil, recycled by the valuable little decomposers in the ground. There are plants, the autotrophs, and consumers—primary, secondary, tertiary and onwards. Yet, specific ecosystems require specific plants. In an underwater ecosystem, corals and different species of anemones are crucial to support the vibrant aquatic life that resides in them. The same is true for a marshland; specific plants must be provided to attract and support specific consumers. Then the predators of primary consumers have to be considered, and the predators of those… the web of an ecosystem is dense with detail.
Even the multitude of scientists working on the restoration of a habitat can’t do it all. A lot of growth has to be left to the seeds they plant. When the environment is right and vegetation is growing, the rest will come soon enough. As a result, ecological restoration takes a while, often years at a time. Scientists must frequent the project area to check on its progress, document things that are working and things that aren’t, and then make adjustments as necessary. Threats to the ecosystem, like runoff water from acrid highways or non-native species, must be dealt with. The water must be acceptably pure. The pH of the soil needs to be right for the plants.
Reconstruction takes a while. The nuances of an old, long-standing environment can’t be matched by the freshly planted reeds in a carefully monitored marshland. Yet, as climate changes (affecting everything from the polar caps to the tropical storms), and humans expand their reach, some delicate ecosystems can’t adjust quickly enough. The sprigs and sprouts of an ecosystem-in-progress and the patient observance of dedicated scientists might be just what habitats need to survive on the rapidly changing Earth.
—
Come see Greg Kamman speak further about ecological restoration in his presentation, “The Role of Physical Sciences in Restoring Ecosystems,” at the Marin Science Seminar this Wednesday, November 7th. The Seminar will take place at Terra Linda High School, room 207, from 7:30 – 8:30 p.m.