Interview with Marine Biologist/Veterinarian Claire Simeone of Marine Mammal Center

Claire Simeone DVM at work
by Kavi Dolasia, Tamalpais High School

Claire Simeone, DVM is a Conservation Medicine Veterinarian at The Marine Mammal Center in Sausalito, California, as well as National Marine Fisheries Service in Washington, DC. In addition to taking care of sick marine mammals that come for treatment at the rehabilitation center, she also travels nationally to respond to Unusual Mortality Events, develops international training programs, and works on the Marine Mammal Health Map, which provides a centralized reporting system for marine mammal health data.

To learn more about her profession, we interviewed her.

1. How did you first get involved in marine biology and the field of veterinary?

I knew I loved both animals and science from an early age. Biology was one of my favorite subjects in high school, and I decided to study neurobiology in college. I started as a volunteer at a veterinary clinic in high school, and continued to work as a veterinary technician through college and veterinary school.
My Dad was an environmentalist, and gave me a deep respect for wildlife and the ocean. I began to be exposed to many different careers that veterinarians could have, and realized that I could combine my love of science and wildlife conservation in a job. My career has been a dream come true.

2. How was your experience training with SeaWorld San Diego?

Much of what I was taught about marine mammal medicine came from my mentors at SeaWorld San Diego and the Navy Marine Mammal Program.SeaWorld has been in the media spotlight recently, and there are a variety of opinions about marine mammals in captive care. In my experience, the animals receive the highest quality medical care, and each person that works with them is incredibly invested in caring for these animals in the best way possible. Medicine is continually advancing, and one of the best parts of my job is that I get to be a part of the pioneering science that improves the health of marine mammals everywhere.

3. What is your favorite “project” you have worked on within the Marine Mammal Center?

One of the most exciting projects has been to be a part of Ke Kai Ola, our hospital for endangered Hawaiian monk seals. We work with partners like the National Marine Fisheries Service and the Coast Guard to rescue young animals that would otherwise not survive on their own, and rehabilitate them in our hospital. We use the knowledge we’ve gathered over 40 years of caring for other seals like elephant seals and harbor seals, and apply it to working with this rare species. Since our hospital opened in 2014, we have rehabilitated more than 1% of the entire population. The best news is that during their last estimate, it looks like the population is starting to increase! This is an amazing way for me to be a part of a project that is literally saving a species.

4. What are the best parts of your job? What are the worst?

There are so many amazing parts of this job! First, every day is different. I never know if I’ll be performing surgery in the hospital, or presenting at a scientific conference, or examining a healthy seal in the wilds of Alaska.

Second, I’m lucky to be able to work with such interesting animals. In addition to being entertaining characters, they’re always teaching us something new about themselves, or the ocean. Third, I love being able to share our science and discoveries with the world. So many of the things my fellow scientists are working on are fascinating, and I am thankful that I’m in a position to share this with so many people.The most difficult part of my job is dealing with the realities of working with sick animals and a sick ocean. We can’t save every animal, and sometimes working with so many sick animals can be sad and overwhelming. That’s why I work to balance negativity with positive conservation stories.

5. Why are you so passionate about ocean conservation?

As we become a global society, our Earth is becoming a smaller place. It used to feel as though our oceans were limitless, with unending stocks of fish. We are now acutely aware that we humans have a significant impact on the ocean. Many of the patients we see at The Marine Mammal Center are impacted by human actions – entangled in ocean trash or struck by a ship.But just as we have the capacity to have a negative impact, we also have the capacity to save our oceans. Marine mammals hold secrets about human health, and the health of the ocean. I feel a responsibility to share these secrets so that every person has the information they need to conserve this planet we share.

6. What advice would you give to someone who aspires to work in a similar field?
It’s a big job to save the ocean! We need lots of people working hard on many different projects. My biggest advice would be to stay open-minded about possibilities. I knew I loved biology, but it was a Spanish teacher who suggested I do an exchange during high school, and now I use Spanish when I work on international marine mammal projects. You never know how your skills will come in handy in the future. Get out there and volunteer at places that are doing interesting work. The Marine Mammal Center has a Youth Crew program for students ages 15-18, and allows you to get hands on experience rehabilitating marine mammals.

Learn more at: http://www.marinemammalcenter.org/Get-Involved/volunteer/youth-crew/

Lean more about Claire Simeone at Marin Science Seminar here: http://www.marinscienceseminar.com/speakers/csimeone.html

Interview with Chemical Engineer Eric Stevenson of the Bay Area Air Quality Management District

by Shoshana Harlem, Terra Linda High School

Eric Stevenson is a chemical engineer who works with the Bay Area Air Quality Management District. He helps figure out air quality issues such as how to reduce greenhouse gases. To find out more about his work, we interviewed him.



1. How did you first become interested in being a chemical engineer in the environmental field?

 I was always interested in the environment, even as a child.  As I progressed through school, I had an aptitude for math and chemistry, so chemical engineering seemed the logic choice.


2. What air quality issues are you currently working on? 

Right now, we are working on a rule to reduce risk from air pollutants at facilities throughout the Bay Area to the lowest levels achievable.  In addition, we are also working on a way to regulate and reduce greenhouse gases, first from refineries and then from other high GHG emitting facilities. 

3. How do you think the new presidential administration will impact your organization?
 Luckily, while we interact with EPA on a large number of issues, we do not receive much funding from them and we also have stricter regulations than them.  While I anticipate that the next four years will be difficult, the fact that we’re in California should help us weather the potential issues with EPA.

4. What does a typical work day look like for you? Also, what is the best and worst part of your job? 
I go to a lot of meetings and work with my staff to get them what they need to get their jobs done.  I do my best to anticipate issues and problems and plan for successful outcomes.  The people I work with are the best part of the job, as they are dedicated public servants, doing their best to protect the health of Bay Area residents.  The worst part of the job is difficult to define, but it’s hard trying to anticipate all of the issues that might come up, and that can make the job more difficult.

5. What advice do you have to people that want to be a chemical engineer in the environmental field? 

 Learn to work with data and listen to what the data are telling you.  Develop your ability for critical thought.

Want to hear more about Eric Stevenson and his job? Come join us on Wednesday, February 15, 2017 at Terra Linda High School from 7:30 PM – 8:30 PM in Room 207!

Paper Planes and World Record Breaking: An Interview with John Collins

by Zach Griggy, San Marin High School, Novato

Inside a hanger at McClellan Airfield, a crowd gathered to watch an attempt to break the World Record in paper aircraft distance. Following a throw, the airplane began to climb into the air. Halfway across the hanger, the paper aircraft stalled briefly, beginning a glide towards the concrete floor below. Approaching the ground, the plane pulled out and sailed across a white line. In those nine seconds, the World Record for Paper Aircraft Distance was broken.

John Collins, the maker of that record-breaking paper airplane, has been designing paper planes for years. He has written books and appeared on many television programs, including the Tonight Show with Conan O’Brien. On January 11th, 2017, John Collins gave a talk at Marin Science Seminar about aerodynamics and paper airplane design.

Following his talk, we interviewed Mr. Collins about his profession and his design process.

1. How did you first become interested in making and paper airplanes?

I just never got out of paper airplanes.  Most people get over it a few months after getting into it.  I started with planes, moved into origami, and then took all of those folding tricks back to paper airplanes.

2. How many attempts did you make in order to achieve the World Record for Paper Airplane Distance? How did these earlier attempts influence later attempts and designs?

Countless.  I worked on it for 3 years.  Joe (the thrower) was with me for the last 18 months.  We went through Moffett Field, Mojave, and finally succeeded in McClellan Airfield.  We started out with a ballistic style dart, but Joe couldn’t beat the old world record with that kind of plane.  We switched to a glider strategy, and immediately knew we were on the right track.  It took a lot of tinkering with the design and taping scheme to come up with the winning plane.  The folding pattern ended up being my very first try with A4 paper three years before.

3. How has the Maker Movement influenced you and/or your design process?

It was inspirational to be sure.  They asked me to participate in the very first Maker Faire in San Mateo, 13 years ago.  I’ve been part of every one since.  My first book was published 13 years before that first Maker Faire, so perhaps we influenced each other.  My design process hasn’t really changed, but it’s been fun interacting with high end tinkerers.  

4. What are the best parts of your job? What are the worst?

Easy; the best part is the audience reaction.  When kids light up and start asking questions, it makes it all worthwhile.  Every once in a while, I have to fold hundreds of the same kind of plane for an event.  That’s a bit tedious, but I put on some music, find my comfortable work chair, lay out the paper and get to work.  I count the sheets of paper before I start making the planes.  When I make it to the bottom of the stack, I’m finished.

5. What advice would you give to makers or students who wish to become makers?

Find something you enjoy and follow it.  Don’t be afraid to change paths, even more than once.  I started in planes, moved to origami, and then discovered my real passion was taking one technology and throwing it at the other.  If you’re going to be the best at anything, you have to love it.  Nobody can force you (at least in this country) to give up food, sleep, or being with friends to accomplish a big goal.  You can’t really compete with someone who’s willing to do that.  You have to be that passionate about your craft.  That passion is self-imposed; it comes from deep inside.  External forces will try to resist it. 

Video Footage of the seminar will be available on Vimeo*. The Spring 2017 Schedule can be accessed here

*Please note that it takes some time for footage to be processed and uploaded. A link will be added to this page when the video has been uploaded

An Interview with Dr. Maggie Louie

By Zack Griggy, San Marin HS

           Cancer is a widespread problem. The American Cancer Society estimates that this year over 1.6 million Americans will be diagnosed with cancer and another half a million are expected to die from it. Dr. Maggie Louie is an experienced researcher in the fields of cancer. Currently, she runs an active cancer research center that studies breast cancer.

To find out more about Dr. Louie’s work and her research, we conducted an interview:

1. How did you first become interested in studying cancer?

I did a medical internship the summer of my junior year in high school and I got to shadow two surgeons.  One of the surgeries that I observed was a 40-year cancer patient undergo double mastectomy.  At the age of 16, just thinking about how breast cancer can take away an organ that partly defines someone’s women-hood had a significant effect on me.  At that moment, I became quite interested in cancer.

2. What studies have you conducted in the past? How have they led you to where you are today?

My lab has conducted many studies.  One of the studies that we did was to study how exposure to chronic low-levels of cadmium impacts on progression of the disease.  Our results show that even at low levels, cadmium promotes more aggressive cancer characteristics and alters the gene expression patterns of the cancer cells.

3. How is tamoxifen used to treat breast cancer? How does a tumor develop resistance to it?

Tamoxifen is an estrogen receptor antagonist and blocks estrogen from activating the receptor and promoting breast cancer growth.

 4. How do metals such as cadmium activate estrogen receptors? How might these metals influence the development of a tumor?

Cadmium is a metalloestrogen and is known to bind and activate the estrogen receptor.  It has also been shown to promote breast cancer growth While we know that heavy metals like cadmium promote cancer growth, scientists are still working to understand how it works.

5. What are the best parts of your job? What are the worst?

The best parts of my job are working with students and using research to inspire them to be interested in science.  The less attractive side of my job is that research is very repetitive and redundant, and sometimes you don’t see an impact for many years.

6. And finally, do you have any advice for students who aspire to study cancer?

 Students should definitely consider studying cancer as this disease will touch everyone in some way, directly or indirectly, and they will be making a difference.  

An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:


1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study?

I’ve always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you’d spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 
2. Why did you specifically decide to focus on functional morphology, locomotion in echinoderms, and the mechanical properties of crustacean exoskeletons? How do studying these subjects help expand your view on the ocean and how humans are affecting it? 
The essence of functional morphology is “function from form”, this gives us insight into how biological structures can actually work mechanically or physiologically. I find this compelling, especially when you consider marine invertebrates which have a wide array of morphological features. At first glance locomotion in sea cucumbers and properties of crustacean exoskeletons may seem to have little in common, but both topics are based on skeletal support systems which is my major interest. I’ve learned quite a bit about different marine habitats as well as how populations size and  species diversity has changed from my studies.
3. What is the most interesting study you have done to date?
I’d have to say my work on locomotion in echinoderms, specifically sea cucumbers. These are very unusual organisms and the average person may not know much about them, but when I describe them it never fails to amaze. My students enjoy watching the time-lapse videos, I actually gave a talk at the seminar several years ago titled “Life in the Slow Lane”. My studies on crustaceans are just beginning but I fully expect some interesting stories in the future.

4. How do you hope the ocean will look in 20 years and what are some steps we can take to get there?
The oceans are important for the functioning of our global ecosystem as well as the global economy. I’d like to see a habitat that is healthier for animals (including humans)  to live, play and work. 
An example of a smaller step is decreasing the widespread use of disposable plastics while increasing the usage of recyclable/reusable materials. A much larger step is the approval of ocean friendly policies that support conservation and sustainability while restricting damage and pollutants. 
5. What is your advice to teens and young adults who want to help preserve our oceans and the creatures that live in it? 
The best advice is to become involved, this can be done at multiple levels from local and regional up to globally in a way you feel most comfortable. Every fall there is a International Coastal Cleanup Day, San Rafael’s Volunteer Program coordinates people with specific sites locally. Volunteers and donations are also welcome at marine conservation organizations, some focus on a specific animal like sea turtles or dolphins while others focus on a issue such as ocean pollution or habitat restoration. 

Modeling Tsunamis and Monitoring Earthquakes: an Interview with Geophysicist and MSS Speaker Diego Melgar

–>

By Talya Klinger, MSS Intern

How can we meet the computational challenge of modeling and monitoring earthquakes in real time, and how can we anticipate and prepare for natural disasters? Diego Melgar, Ph.D. of the UC Berkeley Seismological Laboratory, is investigating these questions and more. As an assistant researcher, he develops earthquake models and tsunami warning systems using high-rate GPS data, paving the way for better earthquake preparation.

1. How did you first get interested in seismology?
I grew up in Mexico City, where earthquakes, volcanoes, hurricanes and other natural hazards are a fact of life. I’ve also always liked math and physics, and so, when it was time to go to college and select a program, I looked around and I found a geophysics degree at the National University that studied the Earth and its physics with lots of math. It seemed like a great idea to me!
2. What are some of the most challenging aspects of modeling natural disasters in real-time?
That they are complex and that measurements are sparse. Many things are going on during an earthquake or any other natural hazard, they’re really complicated! Saying something about them very quickly with sparse observations and being right about it is a real challenge.
3. How do you go about making tsunami propagation models more efficient?

We run them in parallel on bigger computers. We can now make very detailed models of the tsunami in less than one minute.
4. How does the technique of real-time monitoring impact geological research and natural disaster preparation?
 Basic research allows us to find out what are the laws of physics and chemistry that make earthquakes and other hazards do what they do, it lets us find about what makes the Earth tick. In turn, the more we know about the physics and chemistry of the Earth the more intelligent we can make our warning systems, we can provide more relevant and precise information in shorter periods of time.
5. Tell us about your work in analyzing the magnitude 7.8 earthquake in Nepal: what did you discover about its source?
Nepal was a very interesting event because in spite of the fact that there were thousands of casualties and widespread destruction, it really could have been a lot worse. Given the state of development of the country we could have easily seen 150,000 casualties like we did in Haiti in 2010, but we did not. After some research we learned that part of the reason for this is that the earthquake rupture was very smooth and that smoothness lead to less shaking than we would have expected.
6. Finally, what advice do you have for students who are interested in seismology, geophysics, or signal processing?
Learn physics, learn math, and learn computers. Earth sciences are an incredibly rich field where these tools are really important. But also go outside, go hiking, look at rocks, notice how each one is different and wonder where they came from. The Earth is a beautiful laboratory and we should enjoy it with our minds but we should also go out and experience it.

To find out more, watch Dr. Melgar’s Marin Science Seminar presentation on November 18th, 7:30-8:30 pm at Terra Linda High School, Room 207.

Pollinators, Predator-Prey Relations, and Pursuing Your STEM Interests: an Interview with Biologist and MSS Speaker Amber Sciligo

by Talya Klinger, MSS Intern

Dr. Amber Sciligo, a scientist in the department of Environmental Science, Policy, and Management at UC Berkeley, researches the interactions between insects, plants, the environment, and human economies. Whether she directs her focus to examining self-fertilizing carnivorous plants, observing how native bee communities enhance crop pollination, or finding the optimal level of crop diversity for sustainable farming, Dr. Sciligo’s research has important implications for the wild world of botany. Attend her research presentation at Terra Linda High School, Room 207, from 7:30-8:30 pm on October 21st.

In Dr. Sciligo’s words:

–>

1.      How did you originally get interested in ecology and evolution?

Multiple life events led me down this path. The first was in my high school biology class, when I was taught how to catch insects and curate them as if they were to be kept in a museum (arrange their body parts and pin them so that they would dry out and be preserved). I LOVED it. I thought I would become an entomology museum curator. By the time I entered college though, I had changed my interests and thought I would save the dolphins (this was back in the 90s) and signed up for the marine biology major at UCSC. Then I took a scuba class in my sophomore year and damaged my ears. I realized my place was probably not underwater, so I changed my major to Ecology and Evolution, a new major that had the same prerequisites as marine biology. That’s when I took another entomology class, curated insects again, and was reminded how much I loved them! So from then on, I took classes that allowed me to specialize in the ecology and evolution of plant-insect interactions. And the rest is history.


2. Why did you decide to research sundew plants?

I kind of fell into the study system. Normally, one picks a study system to ask a research question. In this case I had my question in mind (is there pollinator-prey conflict in carnivorous plants in New Zealand and how do they deal with it?) without more than a vague idea of where I would conduct the work. I knew I wanted to study carnivorous plants and to ask this question. I knew that I wanted to go to graduate school in New Zealand. And when I put the two together, I landed on the system of Drosera (sundews), because it was the only feasible carnivorous plant that New Zealand had to offer. At the time, I didn’t realize that Australia, just a hop, skip and a jump away, had close to 200 species of carnivorous plants of many types, while NZ only had 12 species of two types. But I had chosen NZ, so sundews are what I got!


3. How do carnivorous plants satisfy their needs for insect pollinators and insects as food at the same time?

They do a pretty incredible job attracting different kinds of insects to their traps and to their flowers, usually by visual cues such as colors, or by emitting different smells from the traps and flowers. Often, smaller insects like ants and tiny flies will get trapped as prey, which provides the plants with the nutrients they need. Larger flies and bees will visit the flowers to provide pollination. Sometimes pollinators get trapped as prey. Maybe they were visiting the flowers and the trap was too close and the pollinators fall in or get tangled up. This can be bad for the plant if they need that pollinator to bring pollen from another flower in order to make seeds. But if the plant doesn’t need this, if it can self-fertilize without many inbreeding consequences, then catching a big juicy pollinator would provide a great feed for the plant.


4. What impact will your research on crop diversification and bee communities have on agriculture?

My current work is looking not just at how crop diversity improves native bee communities, (which is an important finding on its own as it demonstrates a way to leave land in production and support biodiversity at the same time), but also how crop diversity and other practices such as crop rotation, cover cropping, mixing annual and perennial crops, and planting flower strips or hedgerows affect multiple ecosystem services at once, e.g. pollination, natural pest control, and soil and air quality. This allows us to see whether farming techniques that improve biodiversity on a farm provides benefits or tradeoffs to ecosystem services (e.g. plants that attract pollinators might also attract pests, but then they might also attract natural predators of those pests). Farmers don’t think about each of these things independently, they see their farms as a whole system with pests and pollinators, and birds and everything else all interacting at once. So it’s important that if we are going to conduct research that results in management recommendations, then we need to study the farm as a whole too. Otherwise we might make conservation recommendations that are unfeasible and won’t be adopted.


5. Whats your advice for high school students who are passionate about ecology and environmental science?

Find what aspects about these fields specifically interest you and dive in! If you have a more broad interest then seek out as many opportunities as you can to expose yourself to multiple aspects of these fields (there are many) and run with those that bring you the most curiosity and excitement. Volunteer to teach younger children or other community members. Teaching is the best way to learn about something. And look for opportunities to work in research labs at universities. There you can learn what parts of the scientific process you like the most. And maybe you’ll find a system that really fascinates you and you can end up studying that for a senior thesis project at a university, or on your own if you prefer.

I would add that while the scientific research world needs enthusiastic students like you, there are many important roles for people who love the natural world: scientific research is one way to go, teaching in schools or public forums is another, or sharing your values through writing, painting, song or other artistic avenues is also a great way to inspire others around you to pay attention.


6. One last question: do you have a favorite carnivorous plant?

Well, to be honest, I’m not really familiar with too many species. In NZ, there are only 12 species and most of them are really, really small and easy to miss. For instance, my study species ranged from only 1/2”-4” in height. I always wanted to find Drosera pygmaea, whose sticky-trap rosette is only 0.25” in diameter!! It’s no wonder I never found them though…they are so small.

I am also fascinated by the bladderworts (Utricularia spp.). They too are very small and were also at my study sites. You can only spot them when they send out a tiny flowering stalk from the body of water in which they reside. The traps are underwater and act like a vacuum to catch tiny swimming insects. I don’t know how they manage to lure the insects into their little bladders, which is why I find them so interesting. They also have very pretty flowers of bright colors, which is not characteristic of the sundews.
To find out more, come to the upcoming MSS presentation at Terra Linda High School, on Wednesday, October 21st, 7:30 to 8:30 p.m. at Terra Linda High School, 320 Nova Albion Way in Room 207. 
Dr. Amber Sciligo’s Marin Science Seminar profile

An Interview With Dr. Erik Foehr

By Zack Griggy, MSS Intern, San Marin High School, Novato

          In today’s world, infectious disease remains a deadly concern to humanity. Some of these diseases include anthrax, Venezuelian equine encephalitis, bubonic plague, MERS, Eastern equine encephalitis, and, of course, botulism. Botulism is a disease that can cause paralysis and even death, but what makes botulism so different from the rest of these diseases is that the substance that causes it, botulinum toxin, is widely marketed as a beauty product under the name Botox. Dr. Erik Foehr, an expert in the fields of bioanalysis, immunogenicity risk assessment, and drug development, is currently investigating the toxin and how the body responds to it. Attend his presentation at Terra Linda High School, 320 Nova Albion Way, in Room 207 from 7:30 to 8:30 pm on September 30th.

In order to gain a little more insight before his talk, we interviewed Dr. Foehr about his work and research.

1. What drew you into the fields of pharmacology and bioanalysis?
I have always enjoyed learning about biology and how living things work.  After high school at Drake, I went to UC Davis and studied genetics and biochemistry.  I eventually worked in the biotechnology industry and specialized in pharmacology and bioanalysis.

 2. What have you studied in the past and how did this lead to your study on botulinum toxin?

I studied cell biology and how cells signal and function. I also spent many years studying immunology.  In my current job I study how botulinum toxin works and test if people develop antibodies to the toxin.

 3. How is botulinum toxin used in beauty products? How are dangers minimized by these products?

Its a bit crazy to think something so dangerous can be used as a beauty product (it removes wrinkles).  The trick is to use a tiny amount and inject it at the site of the wrinkle. The toxin inhibits the neuro-muscular activity so that the skin looks “relaxed”. They are finding other more medically relevant uses of the toxin.
 4. What do you enjoy the most about your work? What do you enjoy the least?
I enjoy learning about the huge number of experimental new drugs being developed for unmet medical needs and helping to study them. Sometimes I would like to spend more time “thinking” and less time “doing”.
 5. Do you have any advice for high school students who aspire to be pharmacologists?
Study what interests you and be prepared to be a life-time learner. Science and technology move really fast and you need to adapt and learn on the go. Don’t get replaced by robots!
Join us Wednesday, September 30th, at Terra Linda High School, 320 Nova Albion Way, in Room 207 from 7:30 to 8:30 to hear Dr. Foehr talk about his work and his study on botulinum toxin and other lethal diseases. 

An Interview with Dr. Jenna Judge, Marine Biologist

by Talya Klinger, MSS Intern

Driftwood is a common sight on beaches, but what happens to driftwood when it sinks to the seafloor? Dr. Jenna Judge, a recent doctoral graduate of UC Berkeley’s Department of Integrative Biology, researches evolution and ecology in deep-sea habitats, such as driftwood, as well as hydrothermal vents and sunken whale bones. Her research shows that these unusual substrates host diverse, lively communities shaped by the wood they inhabit. Attend her research presentation at Terra Linda High School, Room 207, from 7:30-8:30 pm on September 9th.


In Dr. Judge’s words:


1.   Why did you decide to become a marine biologist in the first place?

Well, I grew up in the mountains, but I was always interested in nature and science. I also loved the beach when my family would go on camping trips to the coast. However, I really decided to pursue marine biology in high school after learning about extreme deep-sea environments and the strange animals that live there from my AP Biology teacher. From there, I looked for colleges that offered a marine biology major for undergraduates and went to UC Santa Barbara. My interests in the ocean and the deep sea in particular were reinforced with each class I took and especially the semester abroad I spent in Australia doing a marine biology program. At the time, the obvious next step for me to take was to apply to graduate school to pursue a career as a marine biologist. While this route has served me well, I usually advise college students to take some time after graduation to explore options before jumping into graduate school. It is a big decision, and it’s important to have a strong sense of yourself and what you want to get out of an advanced program before choosing a program and an adviser.

2.  How did you decide to research driftwood?

I ended up studying sunken wood as a habitat for deep-sea animals after learning that the communities on wood are similar to other deep-sea ecosystems I was initially interested in, but had been much less studied. These ecosystems were hydrothermal vents (basically deep-sea volcanoes), cold seeps, and whale falls, which I’ll explain more about in my talk. Due to a series of conversations with scientists at the Monterey Bay Aquarium Research Institute, I was given the opportunity to test whether the kind of wood matters in shaping animal communities by sinking a bunch of wood at about 2 miles deep and waiting 2 years to see what happened. You’ll see what happened during my talk.

3.   How does your work on communities that form around driftwood relate to other ecosystems?

The experiment I did on sunken wood showed that, like forests and other terrestrial (land) ecosystems, the immediate habitat can act as a filter that shapes the community that colonizes that habitat. This means that the ocean isn’t just a big bathtub with a soup of organisms floating or swimming through it, but that even on small scales, the complexity of a habitat can significantly affect who decides to settle down there. I see all ecosystems as a connected web across the Earth, and I am especially interested in links between the land and the ocean, like wood, but also how the increase in artificial materials like plastic is affecting marine ecosystems.

4.  What advice do you have for high school students who aspire to be biologists?

Follow your curiosity! Ask questions and read about what interests you to keep learning and following your interests. Reach out to people who are doing things you find interesting. Scientists are always happy to hear from people who appreciate what they are doing, and it will help you learn more about what it might be like to pursue certain career paths. And once you have some ideas, research colleges that will support that passion and allow you to fully explore and develop your passion. You might find that the best program for you isn’t at the “top” university in the state or the country. For me, I was only looking at CA schools, and I was really excited about marine biology. So, I focused on applying to schools that had specific aquatic or marine biology majors like UCSB and UCSC, but I did not bother applying to UC Berkeley or UCLA even though they rank higher overall. I encourage you to find a good fit for your interests (and of course a good personal fit!) when choosing a college, and if you don’t have a clear idea about what you want to pursue (most people don’t, I was unusually focused), take your time. If you are looking to pursue marine biology in particular, here is a good site that lists all the programs across states: http://marinebio.org/marinebio/careers/us-schools/.

5.  One final question: do you have a favorite driftwood-dwelling creature?

My favorite wood-dwelling creatures would have to be limpets, since they are what led me to studying sunken wood in the first place. Limpets are snails that have no coil in their shell and a particular group of them are specialized to live in a wide range of deep-sea habitats, including hydrothermal vents, cold seeps, whale falls, and sunken wood. They also  live on empty shark egg cases, crab carapaces, worm tubes, squid beaks, algal holdfasts, and likely other organic substrates that sink to the bottom. 

Join us Wednesday, September 9th, 2015, 7:30 – 8:30 pm at Terra Linda HS, 320 Nova Albion, San Rafael – Room 207 – to hear Dr. Judge talk about her work.  Link to Dr. Judge’s Marin Science Seminar profile. 

Interview with Dr. Katie Ferris of UC Berkeley

by Angel Zhou, Branson School

Monkey Flower 

Monkey flowers and mice – two radically different things. Yet, biologists, like Dr. Katie Ferris, are studying how native monkey flowers and mice have adapted to drastically different environments. 
Dr. Ferris currently works with Dr. Michael Nachman at UC Berkeley, using genetic sequencing and samples of monkey flowers and mice to show how organisms are often adapted to their local environment and that these adaptations are genetically based. 
To learn more about Dr. Ferris and her work with Monkey flowers and mice, read the following interview:
1) How did you decide to enter your field of work?
I decided to become a biologist pretty early on in life. When I was little I loved being outside and interacting with the natural world, especially with plants. Because of my attraction to plants I often got in trouble for picking flowers in my mother’s garden. When I was three years old I picked off every single bright green new hosta lily shoot that popped out of the earth. My mother was furious that I had laid waste to her hostas. After she calmed down a little she told me that when I grew up I should be a botanist because then I could pick any plant that I wanted without getting in trouble. The notion stuck and I pursued biology throughout high school and into college. In college I got a job in a lab that studied plant evolutionary genetics and learned a lot of new and exciting things through doing my own research. That experience is how I became interested in my current field of the genetics of adaptation in wild organisms.
2) Describe your typical day at work as a geneticist. What are the best parts of your job? What are the worst parts?
My typical day at work involves several different kinds of activities, which is something I like. Typically I will attend a scientific talk on something related to my interests, do hands-on work with mice (or monkey flowers in my former job), spend an hour or two doing molecular biology in a wet lab and of course spend a little time working on my computer analyzing data or reading scientific papers. The work with animals and in the wet lab usually involved working with undergraduate students who volunteer in the lab in order to participate in research. Some of the best parts of my job are getting to work with students and trying to spread my love of biology and scientific research. I also enjoy the precious and satisfaction of laboratory work and the personalities of the mice. The worst part of my job is when I have to spend a lot of time dissecting dead mice. I did not go into medicine for a reason 🙂
3) How did you decide to study monkey flowers and wild mice specifically? What conclusions have you drawn thus far in your research?
I decided to study monkey flowers when I was interviewing for graduate school. I visited a lot of different labs that studied plants, but the monkey flowers were by far the most captivating. They are bright yellow, happy little things and closely related species live in an incredible range of different environments from old copper mine tailings to salty coastal sand dunes. They are just really cool plants. I became interested in wild mice because of the work my post-doc advisor had done on the genetics of mouse coloration. He found the genetic changes that caused light colored desert mice to become dark when they lived on black rock outcrops. The mice that live on the dark rocks can then blend in to their surroundings and are less likely to be eaten by predators. I like making hypotheses more than drawing conclusions, but I would say that the main conclusion I have drawn from my research so far is that organisms are often adapted to their local environment and that these adaptations are genetically based. I have also concluded that biology is very complicated 
4) What is your ultimate goal in studying the genetics of adaption and speciation?
My ultimate goal in studying the genetics of adaptation and speciation is to understand better how the world around us works. I want to understand which genes are involved in important traits and if the same genes are used repeatedly to evolve the same traits in different organisms. In short, I want to know if the genetic basis of adaptation is predictable in any way. I also just generally want to contribute new knowledge to the scientific community. A better understanding of the genetic basis of ecologically important traits like drought tolerance or coat color can also be used by scientists in applied field to help improve agriculture or medicine. 

Dr. Katie Ferris, UC Berkley
To learn more about the genes and species’ adaptation to extreme environments, join us on Wednesday, April 1st for Dr. Katie Ferris’ seminar, “From Monkey Flowers to Wild Mice: A Tale of Genes, Adaptation and Extreme Environments” in Room 207 at Terra Linda High School in San Rafael. For more information, visit Marin Science Seminar’s Facebook page: https://www.facebook.com/events/850586588342167/