“When Parasites Kill” – An Interview With Stephanie Rasmussen, M.S.

By Rachael Metzger, Marin Science Seminar Intern 


Stephanie Rasmussenholds a Bachelor’s degree in Biochemistry and a Master’s degree in Biology from Dominican University of California and is coming to Marin Science Seminar Wednesday, October 18th, 2017 to speak about her research on malaria in Uganda.
Stephanie Rasmussen first became interested in biology as a high school student, but it was not until her freshman year of college that she learned what research was and thus realized her passion. Research sparked her fascination with lab work, which allowed her to test biological theories in a lab. Rasmussen decided to study biochemistry because she wanted to “have a deeper understanding of why different reactions happen inside cells to make them work correctly,” as well as to “help scientists, doctors, and other health professionals understand how and why different diseases make people sick.”
As a sophomore in college, Rasmussen worked in her graduate student advisor’s malaria lab. She volunteered in the lab all through her undergraduate years and continued to work in the lab after she graduated to get her Master’s degree in biology. Rasmussen’s passion is in studying human diseases; working in the malaria lab helped further her interest. Graduate school was when she started studying malaria parasites on location in Uganda. Rasmussen shares how this excited her, “I got to travel to a malaria endemic region, where I worked on parasites coming directly from malaria patients.”

Mosquitoes carry malaria (Source: scientistsagainstmalaria.net)
Today, Rasmussen’s lab works with people both in the USA and in Uganda. On the importance of teamwork she says, “I love all of my coworkers. Success in science is all about teamwork and collaboration.” She enjoys working with a diverse group of people that share similar interests and have a shared goal: reducing the malaria burden. She encourages anyone interested in pursuing biomedical research to make connections with those in the field, and to learn about the work they are doing. She emphasizes the importance of taking advantage of research opportunities in college, “The only way people can find out if they like it is to try it.”


–>

Stephanie Rasmussen is happy to answer any questions about research as a career at: Stephanie.rasmussen16@gmail.com

Space Travel: How Does Outer Space Affect Your Body?

By Rachael Metzger, MSS Intern

          Have you ever wanted to become an astronaut? Travel to space? Have you dreamed about finding extraterrestrial life or communing with aliens? If your answer is yes, I can assure you that you’re not alone. Countless children dream of becoming astronauts, and many movies and TV shows have revolved around exploring space. The exploration of the unknown is a wonderful idea on paper, but it is a lot more complicated than jumping into a spaceship and traveling to Mars, even if we have the technology to do so. Space travel can take a huge toll on a human’s body if certain precautions are not taken; any error could result in death.
        The human body was not made to travel in space, nor has it had time to adapt to such an environment. When launched into space, some effects of that changed environment on the body take longer than others to be felt. Immediately one might experience nausea and/ or vomiting. This is caused by the sensitivity of the inner ear which affects balance and orientation. Thankfully, in a couple of days the inner ear will have adapted to the new environment and the nausea will dissipate (BBC “future”).
        In about two days, bodily fluids will rise to the upper body and face, causing a bloated appearance, and tissues will swell in the head, making a person feel like they are hanging upside down. This makes the body think that it is overhydrated and it forces the liquid out through urine, causing astronauts to have 20% less fluids in their body while in space.  

Bodily Fluids in Space 
        Spaceflight can also quickly affect eyesight, creating anomalies such as optic nerve swelling, retinal changes in the shape of the eye, and other negative effects to the eye 
        In a week’s time muscle and bone loss can start to occur, and this sometimes includes heart muscle because not as much effort is needed to pump blood in anti-gravity. The lack of gravity can have such an extreme effect on bones that they can become very brittle; this is called “disuse osteoporosis” (The Dallas Morning News “Preparing Bodies for Liftoff”). Even astronauts’ skin will get thinner, making them more prone to cuts and infections which take longer to heal in space. Sleep deprivation is another problem among astronauts. Because of the change in the light-dark cycle, it can be a challenge for the body to adapt to the new sleeping schedule (NASA).  
The Effects of Space Travel on the Body

       After a while aboard a spacecraft, astronauts may find their immune system becoming less effective, making them more susceptible to diseases. Cosmic radiation is another huge issue facing astronauts. Astronauts seeing flashes of light in their brains is proof of the cosmic radiation. Astronauts’ brains could suffer brain damage from cosmic rays over long periods in deep space, affecting their mental performance (BBC “future”).
        All these dangers could be fatal and might make space travel seem impossible, but there are many precautions being taken to allow us to explore our universe in a safer way. Nausea and vomiting can not always be avoided, but anti-nausea pills and a strong stomach help towards inner ear balance in space. To battle losing 20% of bodily fluids, astronauts must stay well hydrated while their bodies adjust to the new climate. The rising of bodily fluids to the upper body may be uncomfortable but has not  been linked to long lasting negative effects on astronauts, and it subsides after a couple of days. Bone and muscle loss is one of the largest problems facing astronauts. On the International Space Station, astronauts stay fit with a machine for weight lifting, a treadmill adapted for microgravity, and a Cyclergometer, which is a modified cycler for microgravity (NASA). Astronauts have a very strict sleeping schedule to try and achieve the maximum hours of sleep possible. Astronauts have to be very careful of keeping waste and bacteria contained that could contaminate their lowered immune systems. For long expeditions such as to Mars, radiation  protection is being experimented with in the forms of water, waste, plastic, and many other substances.
         Being an astronaut involves more than just knowing about your area of study, it requires knowledge of how the human body operates. If your dream is to become an astronaut, consider the risks, know about your body, but don’t be scared off. Medical and technological advances continue to make space flight safer and easier on the human body, presenting an opportunity to explore space to a further extent.


Sources:
1. http://www.nasa.gov/missions/science/f_workout.html
2. http://www.space.com/29309-space-radiation-danger-mars-missions.html
3. http://nsbri.org/the-body-in-space/
4. http://interactives.dallasnews.com/2015/spacebody/
5. http://www.bbc.com/future/story/20140506-space-trips-bad-for-your-health
6. http://www.nasa.gov/content/study-compiles-data-on-problem-of-sleep-deprivation-in-astronauts/


An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:


1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study?

I’ve always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you’d spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 
2. Why did you specifically decide to focus on functional morphology, locomotion in echinoderms, and the mechanical properties of crustacean exoskeletons? How do studying these subjects help expand your view on the ocean and how humans are affecting it? 
The essence of functional morphology is “function from form”, this gives us insight into how biological structures can actually work mechanically or physiologically. I find this compelling, especially when you consider marine invertebrates which have a wide array of morphological features. At first glance locomotion in sea cucumbers and properties of crustacean exoskeletons may seem to have little in common, but both topics are based on skeletal support systems which is my major interest. I’ve learned quite a bit about different marine habitats as well as how populations size and  species diversity has changed from my studies.
3. What is the most interesting study you have done to date?
I’d have to say my work on locomotion in echinoderms, specifically sea cucumbers. These are very unusual organisms and the average person may not know much about them, but when I describe them it never fails to amaze. My students enjoy watching the time-lapse videos, I actually gave a talk at the seminar several years ago titled “Life in the Slow Lane”. My studies on crustaceans are just beginning but I fully expect some interesting stories in the future.

4. How do you hope the ocean will look in 20 years and what are some steps we can take to get there?
The oceans are important for the functioning of our global ecosystem as well as the global economy. I’d like to see a habitat that is healthier for animals (including humans)  to live, play and work. 
An example of a smaller step is decreasing the widespread use of disposable plastics while increasing the usage of recyclable/reusable materials. A much larger step is the approval of ocean friendly policies that support conservation and sustainability while restricting damage and pollutants. 
5. What is your advice to teens and young adults who want to help preserve our oceans and the creatures that live in it? 
The best advice is to become involved, this can be done at multiple levels from local and regional up to globally in a way you feel most comfortable. Every fall there is a International Coastal Cleanup Day, San Rafael’s Volunteer Program coordinates people with specific sites locally. Volunteers and donations are also welcome at marine conservation organizations, some focus on a specific animal like sea turtles or dolphins while others focus on a issue such as ocean pollution or habitat restoration.