Myths of Astronomy Wed. 9/21 at Marin Science Seminar at Terra Linda HS

This Wednesday, September 21st  Marin Science Seminar will present “Myths of Astronomy” with Thomas Targett of Sonoma State University’s Astronomy and Physics Department. We have extra credit forms at all sessions. There will be astro-swag and door prizes for student attendees. Join us and learn!

September 21: “Myths of Astronomy” with Thomas Targett PhD of Sonoma State University
Check it out on Facebook

Much of what we think we know about space often comes from film and television, but Hollywood’s job is more often to entertain than to educate. In this presentation, Prof. Thomas Targett of Sonoma State university will sort fact from fiction, taking a tour through the worlds of Star Trek, Star Wars, and much more.

Thomas Targett obtained his undergraduate and masters degrees from Cardiff University, in Wales U.K., with a research focus on 21-cm emission from neutral hydrogen. He obtained his PhD from the University of Edinburgh, Scotland, in the fields of sub-millimeter galaxy evolution and the coupled growth of galaxies and black holes. In 2007 Dr. Targett began a research postdoc at Caltech, followed by similar appointments at the University of Birmingham (UK), the University of British Colombia, and the University of Edinburgh. He is currently an Associate Professor of Astronomy and Physics at Sonoma State University.

 Find out more here:
http://www.marinscienceseminar.com/speakers/ttargett.html 

Space Travel: How Does Outer Space Affect Your Body?

By Rachael Metzger, MSS Intern

          Have you ever wanted to become an astronaut? Travel to space? Have you dreamed about finding extraterrestrial life or communing with aliens? If your answer is yes, I can assure you that you’re not alone. Countless children dream of becoming astronauts, and many movies and TV shows have revolved around exploring space. The exploration of the unknown is a wonderful idea on paper, but it is a lot more complicated than jumping into a spaceship and traveling to Mars, even if we have the technology to do so. Space travel can take a huge toll on a human’s body if certain precautions are not taken; any error could result in death.
        The human body was not made to travel in space, nor has it had time to adapt to such an environment. When launched into space, some effects of that changed environment on the body take longer than others to be felt. Immediately one might experience nausea and/ or vomiting. This is caused by the sensitivity of the inner ear which affects balance and orientation. Thankfully, in a couple of days the inner ear will have adapted to the new environment and the nausea will dissipate (BBC “future”).
        In about two days, bodily fluids will rise to the upper body and face, causing a bloated appearance, and tissues will swell in the head, making a person feel like they are hanging upside down. This makes the body think that it is overhydrated and it forces the liquid out through urine, causing astronauts to have 20% less fluids in their body while in space.  

Bodily Fluids in Space 
        Spaceflight can also quickly affect eyesight, creating anomalies such as optic nerve swelling, retinal changes in the shape of the eye, and other negative effects to the eye 
        In a week’s time muscle and bone loss can start to occur, and this sometimes includes heart muscle because not as much effort is needed to pump blood in anti-gravity. The lack of gravity can have such an extreme effect on bones that they can become very brittle; this is called “disuse osteoporosis” (The Dallas Morning News “Preparing Bodies for Liftoff”). Even astronauts’ skin will get thinner, making them more prone to cuts and infections which take longer to heal in space. Sleep deprivation is another problem among astronauts. Because of the change in the light-dark cycle, it can be a challenge for the body to adapt to the new sleeping schedule (NASA).  
The Effects of Space Travel on the Body

       After a while aboard a spacecraft, astronauts may find their immune system becoming less effective, making them more susceptible to diseases. Cosmic radiation is another huge issue facing astronauts. Astronauts seeing flashes of light in their brains is proof of the cosmic radiation. Astronauts’ brains could suffer brain damage from cosmic rays over long periods in deep space, affecting their mental performance (BBC “future”).
        All these dangers could be fatal and might make space travel seem impossible, but there are many precautions being taken to allow us to explore our universe in a safer way. Nausea and vomiting can not always be avoided, but anti-nausea pills and a strong stomach help towards inner ear balance in space. To battle losing 20% of bodily fluids, astronauts must stay well hydrated while their bodies adjust to the new climate. The rising of bodily fluids to the upper body may be uncomfortable but has not  been linked to long lasting negative effects on astronauts, and it subsides after a couple of days. Bone and muscle loss is one of the largest problems facing astronauts. On the International Space Station, astronauts stay fit with a machine for weight lifting, a treadmill adapted for microgravity, and a Cyclergometer, which is a modified cycler for microgravity (NASA). Astronauts have a very strict sleeping schedule to try and achieve the maximum hours of sleep possible. Astronauts have to be very careful of keeping waste and bacteria contained that could contaminate their lowered immune systems. For long expeditions such as to Mars, radiation  protection is being experimented with in the forms of water, waste, plastic, and many other substances.
         Being an astronaut involves more than just knowing about your area of study, it requires knowledge of how the human body operates. If your dream is to become an astronaut, consider the risks, know about your body, but don’t be scared off. Medical and technological advances continue to make space flight safer and easier on the human body, presenting an opportunity to explore space to a further extent.


Sources:
1. http://www.nasa.gov/missions/science/f_workout.html
2. http://www.space.com/29309-space-radiation-danger-mars-missions.html
3. http://nsbri.org/the-body-in-space/
4. http://interactives.dallasnews.com/2015/spacebody/
5. http://www.bbc.com/future/story/20140506-space-trips-bad-for-your-health
6. http://www.nasa.gov/content/study-compiles-data-on-problem-of-sleep-deprivation-in-astronauts/


An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:


1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study?

I’ve always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you’d spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 
2. Why did you specifically decide to focus on functional morphology, locomotion in echinoderms, and the mechanical properties of crustacean exoskeletons? How do studying these subjects help expand your view on the ocean and how humans are affecting it? 
The essence of functional morphology is “function from form”, this gives us insight into how biological structures can actually work mechanically or physiologically. I find this compelling, especially when you consider marine invertebrates which have a wide array of morphological features. At first glance locomotion in sea cucumbers and properties of crustacean exoskeletons may seem to have little in common, but both topics are based on skeletal support systems which is my major interest. I’ve learned quite a bit about different marine habitats as well as how populations size and  species diversity has changed from my studies.
3. What is the most interesting study you have done to date?
I’d have to say my work on locomotion in echinoderms, specifically sea cucumbers. These are very unusual organisms and the average person may not know much about them, but when I describe them it never fails to amaze. My students enjoy watching the time-lapse videos, I actually gave a talk at the seminar several years ago titled “Life in the Slow Lane”. My studies on crustaceans are just beginning but I fully expect some interesting stories in the future.

4. How do you hope the ocean will look in 20 years and what are some steps we can take to get there?
The oceans are important for the functioning of our global ecosystem as well as the global economy. I’d like to see a habitat that is healthier for animals (including humans)  to live, play and work. 
An example of a smaller step is decreasing the widespread use of disposable plastics while increasing the usage of recyclable/reusable materials. A much larger step is the approval of ocean friendly policies that support conservation and sustainability while restricting damage and pollutants. 
5. What is your advice to teens and young adults who want to help preserve our oceans and the creatures that live in it? 
The best advice is to become involved, this can be done at multiple levels from local and regional up to globally in a way you feel most comfortable. Every fall there is a International Coastal Cleanup Day, San Rafael’s Volunteer Program coordinates people with specific sites locally. Volunteers and donations are also welcome at marine conservation organizations, some focus on a specific animal like sea turtles or dolphins while others focus on a issue such as ocean pollution or habitat restoration. 

Ocean Acidification: How the Ocean is Acidifying and Affecting the Organisms That Call it Home

By Zack Griggy, San Marin HS

             Pollution is a global problem. One way to find proof of this is to look to the seas. We all know that the oceans have suffered greatly from pollution, evidence of which can be seen almost anywhere, from areas suffering from oil spills to the huge cluster of garbage floating in the North Pacific Ocean. We also know that many aquatic species are dying and going extinct because of ocean pollution. However, oils spills and trash aren’t the only causes. Another cause is ocean acidification, which is caused by air pollution.
             Ocean acidification begins with carbon dioxide. Carbon dioxide is an essential part of photosynthesis in plants. However, it is also a greenhouse gas, and carbon dioxide emissions have become a global problem. Carbon Dioxide is one of the main contributors to both global climate change and ocean acidification. Carbon dioxide is emitted in huge quantities around the world. Part of these emissions are absorbed by the oceans. This leads to chemical reactions within the oceans to form Carbonic Acid from carbonate and hydrogen ions, which are formed using CO2 absorbed by the oceans. Carbonic Acid is the main cause of ocean acidification. For the past 300 million years, the oceans have had a pH of 8.2, but recently since the industrial revolution, that pH has dropped to 8.1. Estimates say that the ocean acidity may drop by another 0.5 pH
            The effects of ocean acidification can be very harmful to marine ecosystems. Many marine organisms such as arthropods, coral, and plankton will be impacted by ocean acidification. These organisms use the process of calcification to create shells, exoskeletons, etc. Calcification relied on using two ions, carbonate and calcium ions. However, Carbonic Acid also uses carbonate ions, which makes it more difficult for the aforementioned organisms to make their exoskeletons or shells. In addition, when more carbon is absorbed by the oceans, hydrogen ions become more abundant, which makes it increasingly more difficult for the organisms to make their exoskeletons.

Sources:
1. https://www3.epa.gov/climatechange/science/indicators/oceans/acidity.html
2. http://www.iiasa.ac.at/web/home/about/news/150203-Ocean-Acid.html
3. http://www.co2science.org/subject/c/summaries/calcification.php
4. http://www.pmel.noaa.gov/co2/story/Ocean+Acidification
5. http://hilo.hawaii.edu/academics/hohonu/documents/Vol09x06OceanAcidification.pdf

Insidious Air: Defogging Air Pollution and its Pernicious Effects

By Zack Griggy, San Marin HS

           We all know that smoking is harmful to us, but what if the very air we breathe also contains toxic chemicals? The truth is the air we breathe contains numerous chemicals that have harmful effects on both humans and the environment. As a result, the issue of pollution has been a very important and significant problem. It has driven us to invest in green fuels, manufacture in more eco-friendly ways, and cut down on greenhouse gas emissions. However, the problem of air pollution still remains somewhat untouched. Although emissions have been significantly reduced from vehicles and manufacturing plants, the problem as a whole remains.  Air pollution is known to cause numerous issues for the environment and humans, but particulate matter and ozone pose more immediate threats to human health.
           Particulate matter consists of extremely small particles that are a result from burning and can have huge impacts on lung health. Particulate matter, if small enough, can breach through the body’s defenses (the nose, mucus in alveoli, etc.) and even enter the bloodstream. Clearly, this can cause catastrophic problems for human health, such as decreased lung function, irregular heart beat, heart attacks, or even premature death for people with lung or heart disease. In places like the Bay Area, where there is an abundance of hills, which can trap pollutants in small areas and with larger concentrations, pollution can easily accumulate. To make matters worse, particulate matter also has harmful effects to the environment, which include haze, acidification of water basins, depletion of nutrients in soil, etc. Clearly, particulate matter doesn’t just affect humans. Through depleting the nutrients in soil, particulate matter is capable of killing many sensitive plants and crops. In addition, freshwater acidification known to alter flora and fauna in affected ecosystems via increased acidity and toxicity.
             Ozone is an essential, but toxic, gas. In the stratosphere, ozone forms a protective layer that blocks UV radiation, and allows us to live on land. But the ozone layer and the stratosphere are both a considerable distance away from the Earth’s surface. When ozone is at or near Earth’s surface, it poses a threat to organisms that use that air. Ozone can affect entire ecosystems, beginning with plants. Ozone exposure may cause plants to have decreased photosynthesis, slowed growth, and increased risk of harm from disease, insects, storms, etc. But remember, in an ecosystem, damages at the bottom of the food chain can easily work its way up the food chain. Thus, damages from the plants can affect the entire ecosystem, causing a lack of biodiversity, reduced habitat quality, etc. However, in the case of humans, ozone can be much more pernicious. Humans exposed to smaller amounts of ozone or over a shorter period of time may have decreased lung function, airway inflammation, coughing, painful breathing, increased number of asthma attacks, increased risk of death from respiratory disease, shortness of breath, etc.
            These pollutants, and their effects, might seem unpreventable, but really it is the opposite. Both particulate matter and ozone are either emissions, or formed from other emissions. So, we return to the question: how do we prevent the effects of these pollutants? The answer: cut down on emissions. For example, particulate matter is often released during burning, especially burning wood or coal, so if we curtail our burning of wood and coal, we can reduce the effects and quantity of particulate matter. The choice of whether or not to poison our own air rests with everyone. Be sure to make the right choice

Sources:
1. Sitting by a Cozy Fire – Wood Burning, Air Quality, and Your Health (from notes taken during seminar)
2. What’s Getting into Your Lungs? The Effects of Smoke, Ozone, Allergens, and More (from notes taken during seminar)
3. http://www3.epa.gov/pm/health.html
4. http://www.air-quality.org.uk/13.php
5. https://www3.epa.gov/apti/ozonehealth/population.html
6. https://www3.epa.gov/pm/
7. https://www.epa.gov/ozone-pollution/ecosystem-effects-ozone-pollution

Ocean Acidification and Exoskeletons

Marin Science Seminar for Teens and Community Presents

“Ocean Acidification and Exoskeletons”

with Diara Spain PhD of Dominican University
Wednesday, March 9, 2016 
7:30 – 8:30 pm
Terra Linda High School, San Rafael

Come learn about ocean acidification and exoskeletons with Professor Diara Spain of Dominican University. Dr. Spain is Associate Professor of Biology at Dominican University, San Rafael. She earned her B.S. in Biology Education from North Carolina Agricultural and Technical State University and her Ph.D. in Biology from the University of North Carolina at Chapel Hill. Currently, her research focuses on the functional morphology and locomotion of invertebrates.

 A teaser trailer for the presentation that will take place on March 9th, 2016 at Terra Linda High School, room 207. by MSS intern, Camden Pettijohn (Terra Linda High School)

Join us and Learn!

Don’t Take Your Breath Away: Lung Diseases and What Causes Them

By Rachael Metzger, MSS Intern

The lungs are one the most important organs in the human body, so keeping them healthy should be a priority. Unfortunately, lung disease a leading cause of death in the United States, kills roughly four million people every year. Serious lung diseases might seem unpreventable, but in actuality, most are indeed preventable.

The most common cause of lung disease is smoking, with many deaths also resulting from secondhand smoke. When inhaled, tobacco smoke travels from the mouth through the upper airway and into the alveoli. As the smoke moves deeper into the body it is absorbed and particles are left behind in the airways. These particles contain carcinogens (cancer causing agents) and toxins, which put people at risk for disease when present in any part of the respiratory system.

Lung diseases resulting from smoking, such as lung cancer, are the leading causes of preventable deaths in the United States. This means that the extremely high numbers of lung disease deaths could be cut down immensely if simple actions are taken to prevent them. A study published by the New England Journal of Medicine showed that smoking took off approximately ten years of an average person’s life. But the study didn’t consist entirely of  negative outcomes, it also found that if a person stops smoking before the age of 35 they can gain most of that decade back onto their life. But why risk it? Don’t put a vital organ at such a high risk!
 

More than just tobacco smoke gets trapped in the lungs. Other irritants are ingested in our daily lives. One example is particulate matter which is particles made from a wide variety of chemicals and dirt that come in many shapes and sizes. The particles can be so small that they get deep into the respiratory system and cause lung diseases and other health problems (EPA).  
 
Another irritant to the lungs is the increase in pollen and molds, both of which negatively impact the lung disease asthma. When people with asthma inhale pollen and molds, they can have an allergic reaction which results in the airways becoming narrower, thus making breathing difficult (European Respiratory Review).

Similar to pollen and mold, when inhaled ground level ozone can make breathing challenging and worsen lung diseases. Ground level ozone is created by a chemical reaction between volatile organic compounds and oxides of nitrogen in sunlight. Emissions of these substances mostly come from industrial facilities (EPA).
 
It is easier to stop smoking than it is to alter the climate. Cutting out cigarettes can add years onto a person’s life and prevent the pain and expense that comes from diseases such as lung cancer.
 
Environmental factors that contribute to lung diseases can seem more uncontrollable than they actually are. With some simple steps a person can lessen the effects of lung diseases. These include cutting back outdoor activity during high pollen seasons (particularly important for people with asthma), staying away from urban areas as much as possible, and wearing dust masks if needed. It is never too early to take care of your lungs, take the needed precautions to keep them healthy.

Sources: 

Fresh Air February!

Join us this February for two great talks on the importance of fresh air. Here is a teaser vid by Marin Science Seminar intern and Terra Linda High School sophomore, Camden Pettijohn. Join us and learn!


Fresh Air February from Marin Science Seminar on Vimeo.

F R E S H   A I R   F E B R U A R Y

10: Sitting by a Cozy Fire – Wood burning, Air Quality & Your Health” with Eric Stevenson of the Bay Area Air Quality Management District
24: What’s Getting into Your Lungs?: The Effects of Smoke, Ozone, Allergens & More” with Mehrdad Arjomandi of UCSF and the VAMC SF

A Tale of Two Tremors: The Nepal Quake and the San Ramon Swarm

by Zack Griggy, San Marin HS

            The earthquake is an awe-inspiring disaster that can occur anywhere at anytime where two tectonic plates contact. Tectonic plates make up most of the Earth’s crust and move freely, so they can rub up against, move away from, or compress against other tectonic plates, which results in huge amounts of energy. The place where said actions occur are called faults. Earthquakes are the result of rocks along the fault breaking as the faults move. This releases all the pent-up energy from the tectonic plate movement, and results in a tremor. There have been countless earthquakes recorded, but recently, there have been many events in particular that have attracted a large amount of attention in the seismological community, among which include the San Ramon Swarm and last April’s Nepal Quake.

Destruction from April’s Nepal Earthquake

             Since October 15, the town of San Ramon in Contra Costa County, California has been rattled by more than 200 small earthquakes. Thirty of which occurred over two days. The tremors have been small, the largest to date barely reaching 3.2 on the Richter Scale. According to the US Geological Survey, there have been numerous instances of earthquake “swarms,” where numerous earthquakes occur in a close vicinity and in a short period of time. However, the past swarms have occurred over a long period of time, which raised the question of how long this swarm will last. The longest swarm was in the nearby town of Alamo that lasted 42 days with over 350 earthquakes. Residents are concerned about the earthquake swarm but seismologists say that the swarm may be beneficial, because the fault is releasing pent up energy and abating the risk of a large magnitude tremor for years to come.
            However, earthquakes are very capable of wreaking havoc into both the developed and undeveloped world. The recent Nepal Quake of last April is an example of the destructive power earthquakes possess. This quake, centered about 85 miles from Nepal’s capital of Kathmandu, was responsible for the death of over 8000 people and the destruction of over half a

A diagram that shows the risk for earthquakes worldwide

million homes. Millions are still in need of humanitarian aid because of this quake and its aftershocks. The quake reached 7.8 on the Richter Scale, which made this tremor more than 800 thousand times stronger than the strongest tremor in the San Ramon Earthquake Swarm. What really raises concerns however, is the realization that a quake like this could happen almost anywhere. According to TIME, the three cities most at risk for a large magnitude earthquake are Tehran, Istanbul, and Los Angeles. These are densely populated cities, and the fallouts of a large earthquake there could be devastating.

Sources:
1. http://www.ktvu.com/news/east-bay-news/32982571-story
2. http://www.sfgate.com/bayarea/article/Small-earthquake-strikes-in-area-of-recent-swarms-6590014.php#photo-8857844
3. http://www.ga.gov.au/scientific-topics/hazards/earthquake/basics/causes
4. http://time.com/3882272/nepal-earthquake-death-toll-2/
5. http://time.com/3838716/earthquake-risk-nepal/

To learn more about earthquakes and the science behind them, attend Dr. Diego Melgar’s presentation on Wednesday, November 15, 2015 from 7:30 – 8:30 at Terra Linda High School, Room 207, 320 Nova Albion Way. 

Modeling Tsunamis and Monitoring Earthquakes: an Interview with Geophysicist and MSS Speaker Diego Melgar

–>

By Talya Klinger, MSS Intern

How can we meet the computational challenge of modeling and monitoring earthquakes in real time, and how can we anticipate and prepare for natural disasters? Diego Melgar, Ph.D. of the UC Berkeley Seismological Laboratory, is investigating these questions and more. As an assistant researcher, he develops earthquake models and tsunami warning systems using high-rate GPS data, paving the way for better earthquake preparation.

1. How did you first get interested in seismology?
I grew up in Mexico City, where earthquakes, volcanoes, hurricanes and other natural hazards are a fact of life. I’ve also always liked math and physics, and so, when it was time to go to college and select a program, I looked around and I found a geophysics degree at the National University that studied the Earth and its physics with lots of math. It seemed like a great idea to me!
2. What are some of the most challenging aspects of modeling natural disasters in real-time?
That they are complex and that measurements are sparse. Many things are going on during an earthquake or any other natural hazard, they’re really complicated! Saying something about them very quickly with sparse observations and being right about it is a real challenge.
3. How do you go about making tsunami propagation models more efficient?

We run them in parallel on bigger computers. We can now make very detailed models of the tsunami in less than one minute.
4. How does the technique of real-time monitoring impact geological research and natural disaster preparation?
 Basic research allows us to find out what are the laws of physics and chemistry that make earthquakes and other hazards do what they do, it lets us find about what makes the Earth tick. In turn, the more we know about the physics and chemistry of the Earth the more intelligent we can make our warning systems, we can provide more relevant and precise information in shorter periods of time.
5. Tell us about your work in analyzing the magnitude 7.8 earthquake in Nepal: what did you discover about its source?
Nepal was a very interesting event because in spite of the fact that there were thousands of casualties and widespread destruction, it really could have been a lot worse. Given the state of development of the country we could have easily seen 150,000 casualties like we did in Haiti in 2010, but we did not. After some research we learned that part of the reason for this is that the earthquake rupture was very smooth and that smoothness lead to less shaking than we would have expected.
6. Finally, what advice do you have for students who are interested in seismology, geophysics, or signal processing?
Learn physics, learn math, and learn computers. Earth sciences are an incredibly rich field where these tools are really important. But also go outside, go hiking, look at rocks, notice how each one is different and wonder where they came from. The Earth is a beautiful laboratory and we should enjoy it with our minds but we should also go out and experience it.

To find out more, watch Dr. Melgar’s Marin Science Seminar presentation on November 18th, 7:30-8:30 pm at Terra Linda High School, Room 207.